Deep Reinforcement Learning for Solving the Vehicle Routing Problem

نویسندگان

  • MohammadReza Nazari
  • Afshin Oroojlooy
  • Lawrence V. Snyder
  • Martin Takác
چکیده

We present an end-to-end framework for solving Vehicle Routing Problem (VRP) using deep reinforcement learning. In this approach, we train a single model that finds near-optimal solutions for problem instances sampled from a given distribution, only by observing the reward signals and following feasibility rules. Our model represents a parameterized stochastic policy, and by applying a policy gradient algorithm to optimize its parameters, the trained model produces the solution as a sequence of consecutive actions in real time, without the need to re-train for every new problem instance. Our method is faster in both training and inference than a recent method that solves the Traveling Salesman Problem (TSP), with nearly identical solution quality. On the more general VRP, our approach outperforms classical heuristics on medium-sized instances in both solution quality and computation time (after training). Our proposed framework can be applied to variants of the VRP such as the stochastic VRP, and has the potential to be applied more generally to combinatorial optimization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Vehicle Routing Problem with Simultaneous Pickup and Delivery by an Effective Ant Colony Optimization

One of the most important extensions of the capacitated vehicle routing problem (CVRP) is the vehicle routing problem with simultaneous pickup and delivery (VRPSPD) where customers require simultaneous delivery and pick-up service. In this paper, we propose an effective ant colony optimization (EACO) which includes insert, swap and 2-Opt moves for solving VRPSPD that is different with common an...

متن کامل

Solving the vehicle routing problem by a hybrid meta-heuristic algorithm

The vehicle routing problem (VRP) is one of the most important combinational optimization problems that has nowadays received much attention because of its real application in industrial and service problems. The VRP involves routing a fleet of vehicles, each of them visiting a set of nodes such that every node is visited by exactly one vehicle only once. So, the objective is to minimize the to...

متن کامل

A Comparison of NSGA II and MOSA for Solving Multi-depots Time-dependent Vehicle Routing Problem with Heterogeneous Fleet

Time-dependent Vehicle Routing Problem is one of the most applicable but least-studied variants of routing and scheduling problems. In this paper, a novel mathematical formulation of time-dependent vehicle routing problems with heterogeneous fleet, hard time widows and multiple depots, is proposed. To deal with the traffic congestions, we also considered that the vehicles are not forced to come...

متن کامل

Stochastic Approach to Vehicle Routing Problem: Development and Theories

Stochastic Approach to Vehicle Routing Problem: Development and Theories Abstract In this article, a chance constrained (CCP) formulation of the Vehicle Routing Problem (VRP) is proposed. The reality is that once we convert some special form of probabilistic constraint into their equivalent deterministic form then a nonlinear constraint generates. Knowing that reliable computer software...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.04240  شماره 

صفحات  -

تاریخ انتشار 2018